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Things to know

e Operation preserving convexity
e Examples of convex functions

e Quasiconvex function
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Operations preserving convexity
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Nonnegative weighted sums

If fi fori=1,---,m are convex and w; > 0, then g(z) = Y ;" w; fi(x) is convex.

s convex in z for each y € A, and w(y) > 0 for each y € A, then

If f(z,y)
o(z) = /A w(y) £ (2, 9)dy

is convex in x.
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Let w; > 0 then w; f;(Ax + (1 — N)y) < dw; fi(z) + (1 — MNw; fi(y) for all i and X € [0, 1].

gAT + (1= N)y) = Zwifi()‘x +(1=Ny)
< Z Aw; fi(x) + (1 = Nw; fi(y)

= Ag(z) + (1 = Ng(y).
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Composition with an affine mapping

Let f:R" =R, A€ R ™ and b€ R™ If f is convex, then
g(x) = f(Az +b)

is also convex.
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Pointwise maximum function and supremum

If f1 and fy are convex, then f(x) = max(f;(z), fo(z)) with dom(f) = dom(f1) Ndom(f3)) is
convex. Generally, if f1,---, f;, are convex, then

f(@) = max(fi(z), -, fm(7))

is convex.
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(proof) fi(Az 4+ (1 = AN)y) < Afi(x) + (1 = A) fi(y) for all s and X € [0, 1].

FOz+ (1= A)y) max f;(Az + (1 = A)y)
mlax)\fi(x) + (1= A)fi(y)

max Afi(x) + max(1 = A)fi(y)
Amax fi(z) + (1 — A) max fi(y)

Af() + (1 =) f(y),

IANIA
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Pointwise maximum and supremum

If f(z,y) is convex in x for each y € A,

g(x) = sup,e o f(x,y)

is convex in x.
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Example 1

o f:xw max{a] x+by, - ,alx+by,}is convex.

T

e Let 2 € R™ and zy;) be the ith largest component of x. Then f(x) = ._, x}; is convex.
(proof)
flz) =max{x;, + - +mz;, :1<i3 <--- <4, <n}

Since f(x) is the maximum of affine functions, f is convex.

Check the convexity of f(z) = > "7, wiz.
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Example 2 (Distance to the farthest point of a set)

Let C C R™.

f(z) = sup ||lz —y|
yel

is convex.

(proof) g(x,y) = ||z — y|| is convex. Thus, sup,cc g(,y) is convex.
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Example 3 (Maximum eigenvalue of a symmetric matrix)

f:X eS8 Maa(X) €R.
F(X) =sup{y' Xy : |yl =1}

Let g: (X,y) € S" x R™ = yT Xt € R, then g(X,y) is linear for a fixed y. Thus, f is a
pointwise maximum of g(X,y), and it is convex.
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Definition 4 (convex optimization problem)
e fo:R"— R is convex function.
o C={zeR": fi(x) <0,hj(x) =0 for all 4,5 > 1} is convex set where f;, h; : R" — R.

minimize fo(x)
subject to fi(z) <0, i=1,---,p,
=0 j

(
hy () — 1,0 ,m,
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Note that

e If f; is convex then {x : f;(x) < 0} is convex set.
o If h; is affine then {x : h;(z) = 0} is convex set.

e Any finite intersection of convex sets is convex.
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Example 5 (See the proof in p.73-74)

e Quadratic over linear function (convex): f(z,y) = 22 /y, with
domf =R x R++

e Log-sum-exp (convex): f(z) =log(e®* + -+ 4 e*n)
e Geometric mean (concave)

e Log-determinant (concave)
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proof of Geometric mean f : 2 € R?, ~ ([]\_, z;)*/™ € R is concave.

of (x 1/n—1 1/n
83(%)_1—[:6 7/ _(H/>

i#£] =1
9% f(x) 1(n-1) 1/n_1/n—2 1(n—1) 171 1/n) 1
Rt | S i el | S b
02]0(1') . i ﬁxl/n ii
0z ;0xy, o2 bl 2 T T,
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Let z = (21, -+ ,2,) " = (1/21,---,1/z,) " then
1
V2 f(2) = —— (ndiag(f, -+ 27) — 227)

Let a = (a1, -+ ,a,) and v = (ay21, -+ ,anzy,) then

a'V2f(z)a = 7% (nZafz? = (Z G¢Z¢)2>
i=1

=il =

1
= 2 (||1||2HU||2— <1lv >2) <0

The inequality holds by Cauchy inequality. Therefore f is concave.
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Example 6 (Linear regression)

Let (y;,z;) € R X RP fori=1,---,n be response-covariate pairs and the objective function of
linear regression is given by

LB) = 33 (5ol
=1
1 n
— iﬁVZ;xx E:%% B+ }:ﬁ

Let A= (30 @z ), b=>7  yiw; and c = 3 31" | y? then

L(B) = 58TAB VT +c,

a quadratic function.
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A is semi-positive definite because

n n

uT(Z Tir) Ju = Z(xiTu)T(.riTu) = Z \

i=1 i=1

z}ul> >0

for all uw € RP. Thus, L(8) is convex.
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Example 7 (Logistic regression)

Let (y;,z;) € {0,1} x RP for i = 1,--- ,n be response-covariate pairs and the objective
function (negative loglikelihood) is given by

L(B) = - iz B+ _log(1+exp(z]B)).
i=1 i=1
The hessian matrix of L(3) is

-y iz, exp(z; ) !
H(B) = Z_: < (1 +exp(z] B) (1+ exp(l’?ﬂ))> .
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X .L-r
Let p(xi; 8) = %

uWTHBu = Zu zia] p(ei B)(1 — plas B)) u”
- pr 23 B)(L— pl@i D] ul?
(ngn{pm;m( (@ 8)}) X lelulf 2 0,

v

for all w.
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Example 8 (Linear support vector machine)

Let (yi,z;) € { — 1,1} x RP fori =1,--- ,n be response-covariate pairs and the objective
function is given by

n p
L\(B) = Zmax(O, 1—yiz; B) + )\Zﬁf
i=1

j=1

Since I(t) = max(0,t) is convex, it is easily shown that Ly(3) is convex.
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Definition 9 (Conjugate function)

Let f:R"— R. f*:R"” — R is defined as

fflyy= sup (y'z—f(z))

zedom(f)

e f* is always convex.

e If f is convex and closed, then f** = f.
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Example 10
o f(z) = az +b: dom(f*) = {a} and f*(y) =
. f( ) = exp(z): f*(y) = ylogy —y with dom(f ) =Ry
(z) = (1/2)2 " Qu with Q € S}+: f*(y) = (1/2)y" Q™ "y
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Theorem 11 (Fenchel inequality)
f@+f @)=y
for all x,y. This is called Fenchel’s inequality.

Example 12

f(z) = (1/2)z" Qz with Q € 8% ,. Then,

'y <(1/2)z'Qz+ (1/2)y' Q7 'y
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If f is convex and differentiable. Let z* be maximizer of y'2 — f(x) satisfying y = V f(z*).
Then,

fry) = 2"V f(z") - f(z*)

Thus, by solving y = f(z) for each y, we can obtain f*(y) = 2"V f(z) — f(2).
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1. For a > 0 and b € R the conjugate function of g(z) = af(x) + b is
9" (y) = af*(y/a) = b
2. For a nonsingular A € R"*" and b € R" let g(x) = f(Ax + ).
g (W) =f(A"Ty) —bTA Ty
3. 0f f(u,v) = fi(u) + fa(v), where f1 and fo. Then

fH(w,2) = fi(w) + f3(2)
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(proof of 2)
g(y) = sup(y'z— f(Az+b))
= supy (A '(Az+b)—y' Ao~ f(Az +D))
= sup (A~ Ty) T (Az +b) — f(Az+b)) —y A™'b

= ffA Ty -bTATy
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Definition 13 (Quasiconvex function)

e A function f: R"™ — R is called quasiconvex if

Sa(f) = {z € dom(f) : f(z) < o}

for a € R is convex.
e If —f is quasiconvex, then f is called quasiconcave.

e If f is quasiconvex and quasiconcave as well, then f is called quasilinear.
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e If f is convex, f is quasiconvex.
e f is quasiconvex if and only if {z : f(z) > a} is convex.

e fis quasilinear then {z : f(z) = a} is convex.
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Proposition 1 (Definition of the quasiconvex function)

Sa(f) is convex if and only if
fOe + (1= Ny) < max(f(z), f(y))

for A € [0,1].

(proof —) For arbitrary  and y, let & = max(f(x), f(y)). By definition of a-level set, z,y €
Sa(f). Since Sy(f) is convex, Az + (1 — N)y) € Sa(f). Thus, fQz + (1 — N)y) < a =
max(f(x), f(y)). The converse is trivial.
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Example 14

e logx on R, is quasiconvex and quasiconcave. So it is quasilinear.

e ceil(x) =inf{z € Z: z > z} is quasiconvex and quasiconcave.

e Linear-fractional function:

a'z+b
c'z+d

fz) =

with dom(f) = {z : ¢"x +d > 0} is quasiconvex and quasiconcave.
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Prove the following statements.

e Support function S associated with the set C' is defined as
Sc(z) =sup{z'y:y € C}

is convex.

e Let f:R"™ +— R and define

f iy eR" = supl{z'y — f(2)},

the conjugate function of f. Then, f* is always convex.
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Prob set. Ch3

e 3.4-37

e 312, 3.13

3.21-3.23

e 3.26, 3.28, 3.30, 3.31
3.42,3.43
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